
The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 1

Summary
This paper describes the purpose and architecture of ADAPT,
a developer framework for building distributed data meshes that
underlie a broad range of Internet applications and replace tra-
ditional monolithic web back ends.
Monolithic Internet application back ends are not only a security
liability in that a compromise threatens integrity and confiden-
tiality of all user data managed by the application, often affecting
millions or even billions of users. They are also a driving force be-
hind abuses perpetrated by the application providers themselves,
such as aiding authorities in totalitarian countries and training
AI models on proprietary data. When asked whether they are
able to build applications in such a way that user data is inacces-
sible to them, application providers, correctly, answer that, no,
there are no tools that would currently enable them to do so at
scale.
ADAPT is just such a tool, it:

1 enables development of distributed data and processing
node meshes

2 simplifies use of advanced security and cryptography
primitives for programmers with no specialized knowledge
of code hardening

3 ensures a safe and healthy software life-cycle in distributed
node networks

4 enables trustworthy code execution even if code is running
on infrastructure belonging to someone else

ADAPT is not a blockchain nor is it targeting market segments
normally served by blockchain. Instead, ADAPT adopts prin-
ciples of decentralization towards non-financial use cases and,
consequently, operates on an entirely different set of principles.
Its main goal: to reduce reliance on social guarantees by the soft-
ware service providers (“human trust”) in favor of what we call
“technologically-assured trust”.

1. Background

the degree to which
data misuse affects ev-
eryday life of ordi-
nary people is ever-
increasing

Software service providers have ab-
solute control over the software and
the data pertaining to its users. Oft
advertised controls, “Chinese walls”,
and any extant mechanisms ostensi-
bly preventing access by employees
to sensitive user data are completely
subordinate to social circumstances,
such as political pressures and finan-
cial incentives. Nobody likes this state of affairs, but everyone
tolerates it, because we currently have no other way to build soft-
ware. And once the unlimited agency of application’s operators is
impossible to eliminate, it is also impossible to protect the data
from these pressures.
At the same time, the degree to which data misuse affects everyday
life of ordinary people is ever-increasing. Whereas in 1995 a hack
of a website would be considered a non-event, today, families can
literally starve to death were they to be blocked from access to
some online services, such as banking, or government databases.

disruption will come
from services that
completely eliminate
their own ability to
access the data

Despite the ingrained monopolies of
Google and others, there is a signifi-
cant potential for disruption in Inter-
net software market sectors in which
the users exhibit high degree of de-
pendency on the software providers.
In some cases users can no longer rely
on Internet software for their activi-
ties, as seen from the increasing un-
willingness of enterprise to let their employees use SaaS services
for fear of IP misuse. The disruption will come from services that
completely eliminate their own ability to affect the system’s oper-
ations and to access or affect the data within the application. But
this reduction of agency has to be architectural and technological,
not legal or reputational.

blockchain systems
lack in many respects

At this point in the history of com-
puting (2023) we have working exam-
ples of systems in which the agency
of operators is significantly dimin-
ished in order to increase security

and reduce incentives for abuse. These come in the form of
blockchain platforms. Blockchains are globally synchronized finan-
cial data stores with technologically-assured guarantees of consis-
tency (a.k.a. the double-spend problem) and, sometimes, avail-
ability (censorship-resistance).

blockchain systems ...
are highly sensitive to
upgrade risks

However, blockchain systems lack in
many respects. First, they are ex-
pensive (this is the case even with
the second and third generation plat-
forms), because global synchroniza-
tion of a large data set has a specific
bottom price. Second, assurances of global consistency and correct
code execution are insufficient for some use cases, and are unnec-
essary for others. Third, blockchain systems and virtually all of
the components of the blockchain software stack are highly sensi-
tive to upgrade risks, which prevents a healthy evolution of such
software. In the end, blockchain systems are useful to some niche
forms of financial innovation and not much else.
Within SaaS, finance, and IoT industries there remains a strong
need for systems built with architecturally-assured guarantees of
integrity and confidentiality, something that blockchain systems
do not deliver. This trend is exemplified by industry-wide calls
for adopting zero-trust architectures; cloudless IoT authentica-
tion that provides users with self-custody of their authentication
credentials; and privacy-preserving KYC, which aims to establish
privacy guarantees while still enabling meaningful regulation and
surveillance.
Despite web3’s forward-looking alignment with the principle of
reducing operator’s agency, the tools emerging from the web3 space
have seen little to no adoption in non-web3 use cases. To close
the market gap between web3 technologies and enterprise, several
problems need to be addressed first:

• Blockchain is a “fifth wheel”, when it comes to enterprise
systems. Blockchain technology mainly focuses on
availability and consistency guarantees, which are rarely
part of the enterprise software core threat model.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 2

• Web3’s emphasis on payments and (crypto-)currency, and,
in general, on settle-able financial assets as its core focus
misses enterprise customers that see the current payment
rails as perfectly suitable to their purpose.

• Web3’s lack of focus on privacy, or focus exclusively on
privacy of payments but not other types of confidentiality,
is unsuitable for enterprise, with its view of privacy and
confidentiality as a core requirement.

• Finally, web3 software is immature from the standpoint of
enterprise developers. This is not so much the question of
code quality or reliability, but more so of appropriate
modularization and long-term maintainability that
constitute a difficult socio-engineering problem in
decentralized software in general.

ADAPT aims to address these issues, both extending and harden-
ing web3 technologies beyond blockchain and enabling enterprises
to deliver systems with security guarantees appropriate to the ever-
evolving threat landscape.

2. ADAPT Framework

cryptographic prim-
itives are critical
building blocks

Web3/blockchain frameworks have
demonstrated use of cryptographic
primitives such as hash commit-
ments, cryptographic signatures, and
secure multi-party computation as
critical building blocks for software

in which the operator agency is reduced. Other innovations in
cryptography, such as ZKPs, are rapidly gaining momentum and
applicability in this space. Consequently, we see these building
blocks as essential for the new generation of disruptive Internet
software systems.

ADAPT addresses
critical developer
needs when it comes to
building cryptography-
heavy software

The difficulty with extensive use of
cryptography is its inherent fragility.
Not only is it hard to use advanced
cryptography correctly (even devel-
opers that utilize third-party cryp-
tography components need special-
ized skills), but, more importantly,
the primitives themselves are fragile
to later discoveries of critical exploits,
the impending quantum computing revolution, and the steady in-
crease in computing resources dedicated to brute-force attacks.
There is also fragility such systems display in long-term mainte-
nance: software upgrades are both difficult and dangerous in the
decentralized context, because the upgrade process breaks the very
guarantees that the systems are designed to provide.

ADAPT provides
a specialized vir-
tual machine – a
cryptographic data
container

ADAPT vastly simplifies the process
of building cryptography-heavy soft-
ware by providing a specialized vir-
tual machine – a cryptographic data
container. The data container is, in-
ternally, a specialized computation
environment, and externally – a sin-
gle component dedicated to (and only
to) storing and processing any data to

which the desired security guarantees apply.

Data containers consist of data (represented in a high-level and
generic data format similar to JSON, but with extra features, such
as pervasive Merkle hashing), and of code (developed in a domain-
specific language called MUFL) that oversees all business logic as-
sociated with the data stored within the container. Like data, code
objects are content-hashed, enabling a variety of features related
to remote software attestation and ZKPs.

ADAPT supports a
range of protection
mechanisms, includ-
ing TEEs

Orthogonally to the evaluation and
storage environment within data con-
tainers, the ADAPT framework also
supports a range of protection mech-
anisms to prevent unauthorized ac-
cess to the containers. To this
end, the framework utilizes current
industry-standard approaches: TEEs

(for server side) and WASM (for client side). The system will
support a ZKP-based security framework in the future.
ADAPT cryptographic data containers, in combination with se-
curity environments appropriate to each data node, form a secure
data fabric that underlies each specific security-sensitive applica-
tion.

ADAPT containers
form a secure data
fabric of an applica-
tion

The goal of this architecture is to en-
able the framework to control critical
aspects of the cryptography-heavy
software system, which would oth-
erwise be expensive to deliver and
error-prone to build, such as memory-
safe message parsing, deterministic
computation, and portability (includ-
ing to front-end environments). Delegating these tasks to the
framework results in a significant improvement of long-term system
security, while significantly reducing the cognitive burden placed
on developers, especially in the context of long-term maintenance.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 3

ADAPT evaluation environment
In this brief section we outline the ADAPT’s data model and
execution formalism.
A set of valid data values D in Adapt is a union of sets A, F, M, S,
where: A is a set of atoms consisting of strings, integers, booleans
and other primitive types; M is a set of key-value maps of the
form (D, D) → D; F is a set of functions (S, D) → (S, D); and
S is a set of state snapshots explained below.
As the data container undergoes state transitions as a result of
invoking one of its state transition functions with some input,
a state snapshot represents one of its states. Formally, a snap-
shot contains a tuple of n values d ∈ D and a tuple of m state
transition functions from F called transactions, plus a special
initialization function F0. Note that because values from S are
automatically included in D, state snapshots may include other
state snapshots as nested data items (the usefullness of this will
become apparent when we discuss using ADAPT in the context
of ZKPs).
All data in ADAPT is hashable, that is for any d ∈ D a content-
hashing function H(d) is defined and has “good” cryptographic
properties. Because the sets F of functions, and S of snap-
shots are contained in D, any function or snapshot has a “good”
content-hash identifier. Additionally, modules (collections of
functions) in ADAPT are also content-hashed. ADAPT type
system is shown in Figure 1.
ADAPT packets reside inside an execution environment, an eval-
uator. The evaluator hosts a dag or chain of packet’s state snap-
shots, or the latest/current state. The evaluator accepts and
processes requests sent to the packet by another network com-
ponent. We will go into more detail about the types and func-
tions of different evaluators in due course, but note briefly that
the framework currently supports Linux-based server-side eval-
uation, Amazon Nitro secure enclave environment, and WASM-
based front-end environment for browser and mobile components.
ADAPT includes a convention for how packets can cause requests
to be sent to other packets. Such requests are sent by producing
specially-formatted output as a return value of a state transi-
tion function. They are processed by the execution environment,
which is tasked with using the network capabilities of the hard-
ware to send them to the recipient via a message broker.

Figure 1: ADAPT type system

3. ADAPT State Transition Model

Figure 2: ADAPT
packet state transi-
tions

ADAPT’s state transition model was devel-
oped so as to make ADAPT containers into
suitable building blocks for distributed data
meshes. The state transitions of an ADAPT
packet are shown in Figure 2. They enable
one to construct either a chain or a DAG
of states easily, which leads to the simplic-
ity of code used to answer such questions as
“what’s the longest chain”, etc.
The intuition behind Figure 2 is that execut-
ing a transaction on an ADAPT container
will transition the container from the initial
state into the resulting state. Transactions
take input and generate output.
More formally, given a state snapshot si ∈
S, input di ∈ D, and a transaction func-
tion t ∈ F a state transition generates a
new state so and some output do ∈ D.
Note, that for transactions that retrieve
data without modifying the packet, si = so.
Recall that all of si, so, di, do, and t are
content hashed.
It must be noted that use of cryptogra-
phy sometimes requires use of randomly-
generated data (entropy). Entropy com-
prises an additional input to transactions
(not shown in Figure 2) provided by the se-
curity environment in which the container
resides.

4. Messaging system

workflows are imple-
mented as sequences
of messages between
containers

To assemble an application from
ADAPT containers requires that cer-
tain business logic can involve data
stored in multiple containers. We
term such logic secure workflows.
These workflows are implemented as
sequences of messages exchanged be-
tween ADAPT containers.

The framework provides the necessary infrastructure. Messages
can be emitted by containers as a result of a given state transi-
tion, or by the users of the application, as a result of them engaging
with the application’s UI. ADAPT includes a message broker com-
ponent the goal of which is to forward messages between containers
belonging to the same application.
The resulting layered structure of the ADAPT framework is shown
in Figure 3.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 4

Figure 3: Layers of the ADAPT architecture

messages are only sent
to and received from
properly verified com-
ponents

Because secure workflows often re-
quire remote trust, the framework
carries out all possible verifications
at the messaging layer, ensuring that
an invalid message does not reach the
addressee container. This includes,
for example, a situation in which one
or both of the interacting nodes use

a secure enclave environment for protection. In this case, the soft-
ware attestation process provided by the enclave(s) is used by the
messaging framework to ensure that messages are only sent to and
received from properly verified components. This greatly improves
programmability of software that makes use of secure enclaves. A
similar mechanism will be provided for ZKP-based security, which
similarly requires verifying the software being proven.

5. ADAPT as a smart contract framework
Similar to other innovations pertaining to decentralized software,
the term smart contracts first came from web3, referring to code
executed in an environment of high security for the purpose of
financial transactions. That is, smart contract code execution en-
vironment (blockchain, in the case of web3 systems) is what en-
ables this, because it provides technologically-assured (rather than
social) guarantees of integrity, consistency and availability.

smart contracts are
secure workflows over
a common dataset

The term smart contract is a mis-
nomer, taking its root from the fact
that such code is most often used to
mediate financial interactions which
some may naively see as “contrac-
tual”, e.g. payments made when cer-
tain conditions are true.
From the software engineering standpoint, smart contracts are dis-
tributed secure workflows over a common dataset. In the case of
web3, this dataset often represents financial ownership data. How-
ever, the applicability of distributed secure workflows does not end
there by a long shot.

even in simple non-
financial systems,
interactions between
nodes can be viewed
as smart contracts

In practice, any environment that
aims to reduce operator agency must
enable some form of smart con-
tracts. Even in such relatively sim-
ple software systems as secure peer-
to-peer chat, the interaction between
two clients can be described as a
smart contract. For example, using
ephemeral messages to communicate

sensitive information requires party A to trust that party B will
delete the message at the pre-agreed time. The code that carries
this out within B’s chat client is a smart contract. This is where
ADAPT’s general view on decentralization departs from the con-
vention web3 view, in which smart contracts are seen as a purely
financial primitive.

ADAPT’s data containers were designed to enable such general
form of smart contracts. Their highly-portable deterministic ex-
ecution environment and its approach to representing data and
business logic as universally content-hashable can be used to im-
plement financial primitives, but is also suitable for a much broader
set of use cases.

verifying the security
claims one system’s
node makes to another
are essential for build-
ing robust systems

It is important to note that the se-
curity guarantees of smart contract
code in ADAPT are not the prop-
erty of the code itself or the execu-
tion framework, but rather of the en-
vironment into which the framework
is embedded. TEEs and ZKPs pro-
vide a different set of security guar-
antees and answer to different threat

models. Understanding the limitations of the secure environment,
and, when possible, verifying the security claims one system’s node
makes to another, are essential for building robust systems.

ADAPT implements
an abstract smart
contract mechanism

To summarize, ADAPT implements
a highly portable, security-sensitive,
isolated, and distributed execution
framework, whose sole purpose is
to process requests that manipulate
security-sensitive data, often using
advanced cryptography primitives. In essence, ADAPT imple-
ments an abstract smart contract mechanism, which can then be
embedded within any secure environment, without making almost
any assumptions with respect to the specific use case in which it
is used.

6. ADAPT for SaaS

the way SaaS systems
store data leads to the
so-called “honeypots”

Figure 4 shows a typical way SaaS
applications are architected from the
security standpoint. The point of the
drawing is to show that the security
of a SaaS software back-end relies on
the security perimeter established by

the organization that owns it. Client nodes are speaking to a black
box that does not have a way to prove to them any facts about its
security arrangement.

security of SaaS prod-
ucts inevitably falls
behind the value of
their data honeypots

Furthermore, the way such systems
store and organize data leads to
the so-called “honeypots”, locations
that are constantly and indefinitely
increasing the potential value that
could be extracted with an exploit.
Honeypots are not insecure by defini-
tion, but because they grow to attract
ever-increasingly motivated attackers, they must also increase their
overall security in step with their growth. This rarely happens
in practice, since security is a cost center, not a profit center.
With costs of security increasing non-linearly as the threat pres-
sure grows, security of SaaS products inevitably falls behind the
value of their data honeypot.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 5

Figure 4: Typical simplified architecture of a SaaS system

the data honeypot is
replaced with a mesh
of nodes

The architecture made possible with
ADAPT is shown in Figure 5. Here,
the data honeypot that used to accu-
mulate on the back-end of the SaaS
application is replaced with a mesh
of nodes, each storing data pertaining

to its own needs, or a specific segment of the application. The se-
curity perimeter established by the organization owning the given
SaaS service is removed, and the appropriate security mechanism
is provided by each node, individually.

Figure 5: Peer-to-peer architecture with ADAPT

ADAPT can be
used to create non-
custodial applications

Benefits of ADAPT do not end with
the breaking up the data honeypots
and with providing easy programma-
bility of secure workflows between in-
dividual nodes. ADAPT also deliv-
ers a mechanism to establish remote

trust between nodes wherever possible, introducing security guar-
antees can be verified by anyone within the network, and so re-
ducing the agency of the system’s operators.
Systems that make this possible today are: secure enclaves and
zero knowledge proofs. Adapt currently supports full scope secu-
rity with enclaves, and the team is building a zero-knowledge proof
system appropriate for the ADAPT environment. Weaker security
environments of mobile and front-end nodes are also supported via
WASM.
ADAPT vastly improves on the SaaS service architecture by break-
ing up the back-end data store, and enabling remote trust with
client-side verification. The system can be used to create non-
custodial applications, improving the degree of protection users
have from both exploits and data misuse.

7. ADAPT for Web3

ADAPT targets sys-
tems irrespective of
the kind of security
they require

Blockchain has significant limitations
stemming from its core focus on
global consistency and availability
(censorship-resistance). This means
that blockchain fails as a platform for
use-cases that require privacy (data
sharing, key management) and is
needlessly expensive to employ for
use cases that require trustworthy code execution, but not global
consistency, such as derivatives finance. Figure 6 illustrates
that nodes interacting with blockchain, are not architecturally-
trustworthy, despite claims of radical decentralization made by
blockchain developers.

Figure 6: Human-based trust still present in blockchain-based systems.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 6

ADAPT expressly targets systems irrespective of the kind of se-
curity they require. The nodes shown in Figure 5 can be globally
synchronized (after all, achieving global consensus is just another
secure workflow between system’s node). But since ADAPT sup-
ports other types of security, it becomes broader than blockchain
in its ability to meaningfully support non-financial use cases that
rely on securing critical data, even from the operators themselves.

8. Zero-knowledge environment

ZKPs provide trust of
remote computation

Zero-knowledge proofs (ZKPs)
have recently gain notoriety in the
blockchain/web3 space. In short,
ZKPs enable a software node to
convince another node that some

computation has been carried out faithfully, while, optionally,
hiding the inputs of the computation. This has many applications,
the main of which is the ability to enable trustworthy remote
execution of code in use cases which used to require human-based
trust.
A good case study in this area is peer-to-peer gambling, such
as poker. ZKPs enable a provably-fair construction of common
source of randomness for participants, which is an incredibly dif-
ficult problem if tacked without them. Notably, much like with
derivative finance, p2p gambling only requires blockchain for set-
tlement. The game-play itself does not require global consensus,
merely the local agreement between the playing participants.
The basic building block upon which we will heavily rely is the
zk-proof associated with state transitions of an ADAPT packet
from Figure 2. Given a state snapshot si ∈ S, input di ∈ D, and a
transaction function t ∈ F a state transition generates a new state
so and some output do ∈ D. Recall that all of si, so, di, do, and
t are content hashed. A zk-proof can be generated, which, given
hashes H(si), H(so), H(di), H(do), will attest to the validity of
the state transition.

This mechanism en-
ables concise program-
ming of peer-to-peer
financial contracts

We can chain these together, provid-
ing a proof for a sequence of state
transitions. We can further gener-
alise this as follows: given a packet ID
and a pair of state hashes (where the
origin state may be optionally NIL
for a proof that includes packet ini-
tialization) we can generate a proof
of validity of a subsequent state hash of the packet after carrying
out N transactions. We can include a single composite hash that
merkelizes the entire set of interim states, inputs, and outputs.
Using the composite hash, we can now selectively reveal any facts
about the packet or any of its interim states or transactions. A
more detailed drawing of the generalized state proof is shown in
Figure 7.
This mechanism enables remarkably concise programming of peer-
to-peer contracts of the sort illustrated by the gambling use case.
For example, the example code that constructs a provably-fair
shared card deck between two players is about 100 lines of code,
of which the majority is simply constructing a private card trans-
position, and only about 20 lines are dedicated to ZKPs and hash
commitments required for the process.

Figure 7: Inductive generalized state transition proof

Generalizing state transition proofs
Figure 7 shows the inductive mechanism to form a generalized
state proof GP (m, n), given GP (m, n− 1). GP (m, n) consists of
a tuple of the following values:

1 a multi-proof MP (m, n), which is a composition of
zero-knowledge proofs P (n) of the correctness of the state
transition n, a multi-proof MP (m, n− 1), and a
proof-of-match, P M(n), which proves that the initial state
hash at state n matches the result state hash at state
n− 1;

2 a composite hash CH(m, n), which is a merkle-composite
of CH(m, n− 1) with the data tuple associated with P (n),
which includes the state hashes sn−1 and sn, and the
input dn

i and output dn
o of transaction n

3 a reveal and correctness proof of values associated with
the transition from state m to state n: the ID of the
packet, and the hashes of the two states

4 and it can optionally include a list of revealed (and
proven) facts associated with the state transitions or the
packet, R(m, n) which we will discuss below.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 7

9. Fragility of remote trust security

remote trust guaran-
tees that some remote
computation was per-
formed correctly

Trustworthy remote computation is
one of the forms of technologically-
assured trust. It guarantees that
some computation performed by a
different party was carried out cor-
rectly. The two technologies that en-
able remote trust of computation are
TEEs and ZKPs. TEEs are hardware

components that provide confidentiality and software attestation
mechanisms to ensure that the computation is performed as ex-
pected. ZKPs enable party A to prove to party B that some com-
putation was performed correctly using cryptographic means.

remote trust requires
pinning down the ver-
sion of the software

Both of these technologies (and all
other approaches that achieve the
same purpose) must pin down the
version of the software being proven
or attested. Trustworthy remote
computation must assert that soft-
ware being executed matches some known and expected version,
down to each specific instruction. If they lacked this mechanism,
such primitives would be entirely useless, since proving faithful
execution of unknown software carries no benefits.

security is a process,
not a state

However, no software can ever exist
as a single version. Software under-
goes fixes and improvements, and in
any real live systems multiple ver-
sions must be supported. This is es-
pecially true of security-sensitive software, since it is unreasonable
to expect that a specific software package contains no exploits.

any real live system
must support multiple
versions

Security, in other words, is a process,
not a state. Software that wishes to
remain secure in the long term must
be easily upgradable. Yet, upgrading
software in the presence of security
primitives that pin down the software

means introducing a choice of verifiers, one for each valid version.
To eliminate the fragility that results from this, the source of truth
on the validity of software version for purposes of remote trust
verification must also be technologically trustworthy.

ADAPT addresses the
fragility problem and
so is positioned to cap-
ture the decentralized
software market

This is the key insight for the soft-
ware disruption this paper describes.
No system that fails to provide soft-
ware upgradability without compro-
mising security can survive and fulfill
the needs of developers. ADAPT ad-
dresses the fragility problem out of
the box and so is positioned to cap-
ture the decentralized software mar-
ket in the long term.

10. Data fabric

Data underlying
decentralized appli-
cations cannot be
protected in its en-
tirety with a single set
of security guarantees

ADAPT is a framework for build-
ing the complete data fabric under-
lying technologically trustworthy (de-
centralized) applications. We note
that in web3 the data fabric pro-
vided by blockchain is incomplete in
that it only provides a mechanism
for managing globally-synchronized
data. Other data components of the
web3 software stack are not decen-
tralized: key management compo-

nents, static data stores, front-end software packages, etc.
Data underlying decentralized applications cannot be protected
in its entirety with a single set of security guarantees. Within
the same application, some data requires strict privacy, some data
requires global synchronization, some data requires remote com-
putation trust, and some data requires a combination of these.
ADAPT offers a mechanism to implement all of these possibili-
ties using the same programming approach, in which the logic of
the data component is implemented in the ADAPT’s program-
ming language, irrespective of the kind of security needed for this
component. The framework then allows developers to deploy such
components into one of many possible security environments.

11. ADAPT programming
We proceed by describing at a high level ADAPT’s programming
language and execution environment.
ADAPT is designed as a system with strong emphasis on security.
As such, the programming model for the ADAPT containers is
critical, as it should strongly support predictable evaluation with
highly restrictive features. The design also calls for strong ver-
ifiability of the code, for example during the attestation process
between ADAPT nodes.
These requirements are not optional good-to-haves, but are crit-
ical considerations, without which the system would not possess
the strength of the security model fit for the task at hand. Con-
sequently, it would not be useful or practical to adopt one of the
existing general purpose scripting language (such as Python or
Javascript) to the goal of ADAPT database programming. These
languages, having the design goal of generality, provide the oppo-
site of restrictiveness we need, and if they were to be employed
in this context, we would have to engage in the continuous game
of whack-a-mole to eliminate all the security holes they create, as
a matter of on-going practice. This of course will never lead to
reliable and provable security, something we strongly aim for.
These considerations have led us to introduce a special purpose
programming language into the ADAPT programming environ-
ment. The language, called MUFL (pronounced like “muffle”), is
a no-side-effects functional programming language. MUFL con-
tainers features necessary for the design we describe, including
being able to define the container API, use advanced cryptogra-
phy primitives, interact with other containers, and so on. The
language gives developers no access to any IO or system features.
Its evaluation result is 100% deterministic and portable across all
environments, including the front-end containers.



The ADAPT Framework
Project White Paper, Aleksandr Bulkin, 2023 8

ADAPT programming environment is as an off-chain equiva-
lent of blockchain smart contracts. As such, using a custom-
built programming language is validated by the fact that most
blockchain system have opted to develop a special purpose lan-
guage for their needs, starting with Ethereum’s Viper and Solidity,
Kadena’s Pact, and others.
Figure 8 shows a small snippet of MUFL code that declares a
portion of the network API of a database node related to estab-
lishing a contact with another database node through a trusted
“introducer” node.

Figure 8: A small snippet of MUFL code.

The following unique features of MUFL serve the overall design
goals of ADAPT:

1 MUFL code compiles into a data structure (evaluation tree)
that is easily reverse-engineered and becomes human
readable, close to the source code. This feature makes it
hard to hide exploits when source code is not available.

2 MUFL code forms evaluation units, code packages that can
be used to drive individual data containers. Evaluation
units are content addressable. The data structure generated
by the compiler is a portable Merkle tree, and can
consistently generate a hash root that uniquely identifies
the evaluation unit. This feature is used by node-to-node
attestation, allowing nodes to communicate to each other
the exact code running inside their respective databases.

3 Because MUFL code is required to always evaluate
deterministically, the programmer does not have access to
any system primitives, even system time. The transient
data, such as the transaction timestamp and entropy used
to create cryptographic keys is generated by the
environment into which the container is embedded, and is
deterministically accessible inside the database code. This
enables the framework to easily create opaque mirrors and
encrypted transaction log backups.

4 MUFL is a functional language, but all values in the
lambda frames are bound by value. This eliminates the
need for a garbage collector, improving overall performance.

5 There is a consistent C++ API that enables the platform to
easily add new primitives, such as cryptography functions,
and to define new data types. This makes the platform
easily extensible.

Summary
ADAPT is a developer framework for building software which
reduces the agency of the system’s operators by eliminating a
monolithic web back end, and replacing it with a data mesh of
cryptography-enabled programmable nodes. Inspired by web3,
ADAPT, however, recognizes that security is not limited to the
double-spend problem solved by blockchain. Other types of se-
curity (confidentiality, remote trust) must provided in order to
enable important use-cases both in web3 and in enterprise tech-
nology.
ADAPT is an alternative form of a decentralized network that
decouples applications from each other, while maintaining in-
teroperabilty. Unlike blockchain ecosystems, which add smart
contracts on top of a consensus mechanism, ADAPT supports a
range of security models built around a universal smart contract
layer.
ADAPT is a hybrid system that includes an open source soft-
ware SDK and includes a set of decentralized services that solve
some problems universal in the context of distributed node net-
works, for example the fragility of remote trust when placed in
the context of a healthy software lifecycle.
The vision for ADAPT is that of end-to-end decentralization that
includes enterprise and consumer applications alike. It is espe-
cially suitable for use cases that are not well-served by blockchain
systems, such as data sharing, identity, document sharing, au-
thentication, derivative finance, lending, supply chain, and oth-
ers.

LIST OF MATERIALS

ADAPT white paper (this document)
ADAPT zero-knowledge virtual machine
ADAPT on-chain private smart contracts
ADAPT for Web3 off-chain data management
ADAPT for traditional finance
ADAPT for IoT security

https://blog.adaptframework.solutions/pdf/adapt-wp-public.pdf
https://blog.adaptframework.solutions/pdf/adapt-wp-zk-public.pdf
https://blog.adaptframework.solutions/pdf/adapt-wp-l1-public.pdf
https://blog.adaptframework.solutions/pdf/adapt-wp-web3-public.pdf
https://blog.adaptframework.solutions/pdf/adapt-wp-financial-public.pdf
https://blog.adaptframework.solutions/pdf/adapt-wp-iot-public.pdf

